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This paper presents the first experimental results on Marangoni–Bénard instability
in a symmetrical three-layer system. A pure thermocapillary phenomenon has been
observed by performing the experiment in a microgravity environment where buoy-
ancy forces can be neglected. This configuration enables the hydrodynamic stability
of two identical liquid–liquid interfaces subjected to a normal gradient of tempera-
ture to be studied. The flow is driven by one interface only and obeys the criterion
based on the heat diffusivity ratio proposed by Scriven & Sternling (1959) and Smith
(1966). The measured critical temperature difference for the onset of convection is
compared to the value obtained from two-dimensional numerical simulations. The
results of the simulations are in reasonable agreement with the velocimetry and the
thermal experimental data for moderate supercriticality. Numerically and experimen-
tally, the convective pattern exhibits a transition between different convective regimes
for similar temperature gradients. Their common detailed features are discussed.

1. Introduction
Since the works by Block (1956) and Pearson (1958), surface tension gradient is

known to be responsible for cellular convective instability in liquid layers bounded by
a gas phase and heated from the opposite rigid boundary side. These thermocapillary
instabilities occur even in the absence of gravity.

Pearson introduced a dimensionless number, the Marangoni number Ma, which
expresses the ratio of the surface tension force to viscous and thermal dissipations:

Ma =
(dσ/dT )h∆T

κµ
, (1.1)

where κ, µ and h are the thermal diffusivity of the liquid, the dynamic viscosity and
the thickness of the layer respectively, dσ/dT is the interfacial tension variation with
the temperature and ∆T = Thot − Tcold is the temperature difference imposed across
the layer. Pearson considered a single layer of liquid, ignoring the presence of the
gas phase; he showed that the instability results from the amplification of velocity
perturbations induced by surface tension gradients competing with the thermal and
momentum diffusions.

In a double-layer configuration, the convective motions in both bulk regions will
contribute positively or negatively to the growth of interfacial tension gradients.
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The theoretical work of Scriven & Sternling (1959) is the first investigation of the
Marangoni–Bénard instability in superposed layers. Unlike previous works, Scriven
& Sternling treated the problem of the mass transfer of a tensioactive solute across
the interface as an hydrodynamic instability. They considered two infinite layers in
contact with each other and disregarded mass accumulation along the interface so
that their conclusions also apply to heat transfer, provided the heat diffusivity is
replaced by a mass diffusion coefficient. They proposed a criterion for the occurrence
of the vigorous agitation phenomenon sometimes observed near the interface of two
superposed non-equilibrated organic liquid phases.

They concluded the following: for a definite direction of the transfer of the surface-
active agent, the parameters determining whether solutal instability will take place or
not are the ratio of the diffusion coefficients in the two phases and the ratio of the
kinematic viscosity of both liquid phases adjacent to the interface. But these authors
did not provide a critical value of the Marangoni number.

The pioneering work of Scriven & Sternling was extended by Smith (1966) and Re-
ichenbach & Linde (1981). Smith treated the case of two superposed immiscible liquid
layers of finite depth subjected to a temperature gradient. The possible interfacial
deformations were included which introduced the weight of the displaced liquid. The
analysis was restricted to neutrally stable modes (no overstability) and he obtained
a general analytical expression for the marginal Marangoni number. If deformations
of the interface are disregarded, the sign of the marginal Marangoni number, which
corresponds to the sign of the temperature gradient, is governed only by the ratio of
the heat diffusivities of the liquid phases.

Reichenbach & Linde made an extensive analysis of the problem investigated by
Smith, as they extended his systematic study to all possible marginal cases, neutral
ones as well as overstable ones. However, the numerical resources available at that
time lead to conclusions for overstability less global than for neutral stability cases.

Later, Zeren & Reynolds (1972) studied experimentally and theoretically the same
configuration as Smith, neglecting the possibility of critical overstable modes. They
considered the particular system of benzene over water because its parameters allow
the existence of instability when heating from the upper or the lower side. They
failed to observe pure thermocapillary instability when heating from above; this was
attributed to an interfacial contamination.

Imaishi & Fujinawa (1974) took up Zeren & Reynolds’ investigation. They were able
to measure the critical temperature difference for the onset of combined buoyancy-
and thermocapillary-driven instability in clean and contaminated two layer systems
(water–carbon tetrachloride and benzene–water systems) heated from below. Their
measurements largely confirm the results of the linear stability analysis but practical
difficulties prevented them from detecting the instability in systems heated from above
and observing the flow pattern.

Since 1974, as far as we know, no experimental results on the Marangoni–Bénard
instability in a multilayered system have been published, while there exists a vast
theoretical and numerical literature on the two-layer Rayleigh–Bénard problem (see
e.g. Rasenat, Busse & Rehberg 1989 and Cardin, Nataf & Dewost 1991). Wahal &
Bose (1988) extended the discussion to a case where the top layer is bounded by a
free surface containing an insoluble surface-active agent. However, they considered
the particular case of two fluids of very similar properties, so that an experimental
verification is very difficult. More recently, Simanovskii & Nempomyashchy (1993)
addressed numerically and theoretically some of the most interesting aspects of the
two layer Rayleigh and Marangoni–Bénard instability.
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As a forerunner of the present work, Géoris et al. (1993) discussed a model of
a symmetrical three-layer configuration where one fluid is sandwiched between two
layers of another fluid. This is a situation that microgravity could make realistic. The
linear stability analysis is supplemented by numerical computations on systems of
experimental interest. As already found by Smith for the two-layer configuration, the
driving interface for the monotonic (non-oscillatory) case, is selected by the ratio of
the heat diffusivities of the liquids. The viscosity ratio does not influence the nature
(monotonic or oscillatory) of the critical convective mode because of symmetry.
When the heat diffusivities tend to be equal, the monotonic convection modes are
restricted to large wavenumbers and are replaced by an oscillatory mode with a
critical wavenumber about 2.

The present paper reports first experimental results on pure thermocapillary insta-
bility in a multilayer system, to fill the void separating theory from experiment. The
thermocapillary instability of the multilayer system depicted in figure 1 is studied in
a real microgravity environment. The hottest and coldest layers are labelled 1 and 3,
respectively. Apart from the difference in temperature, these outer layers are identical
in every other aspects. The middle layer, labelled 2, is a different immiscible liquid.
In this particular set-up, the free interfaces 1-2 and 1-3 are identical. In microgravity,
such a symmetric situation can be made stable with respect to the Rayleigh–Taylor
instability, provided some precautions are taken in the design of the experimental
hardware.

The paper is organized as follows. In the next section, the experimental set-
up, conditions and fluid properties are described. Then, the results of the linear
stability analysis and the numerical simulations are presented for the configuration
corresponding to the experiment. Finally, the results of the experiment are analysed
and compared with the theoretical and numerical data.

2. Experiment description
The microgravity experiment was performed in June 1994 during the IML2 mission

of Spacelab aboard the US Space Shuttle. The experiment was conducted in the
BDPU (Bubble Drop and Particle Unit) as part of the programme developed by the
European Space Agency. The BDPU is a multi-user facility designed to study fluid
physics in microgravity. This instrument provides the thermal control and the flow
visualization tools for a dedicated experimental cell.

2.1. Fluids

Fluorinert FC70 (3M) for the lateral layers and silicone oil 10 cSt (Dow Corning)
for the central layer were selected for the experiment. The physical properties of the
liquids and their relevant ratios are listed in table 1: dσFC70−Si/dT has been measured
using the maximum drop weight method described by Harkins (1952), and the value
obtained is in good agreement with the measurement by Burkersroda, Prakash &
Koster (1994) using the de Noüy ring technique (−2.9× 10−5 N m−1 K−1).

2.2. Fluid container

The experimental set-up is represented in figure 1. The fluid container is made of a
rectangular quartz frame closed on two sides by two sapphire windows, each being
1 cm thick. Each liquid layer is 8 mm thick, 50 mm wide and 35 mm deep. Initially,
the layers are separated by two 50 µm thick stainless steel curtains to prevent mixing
before the beginning of the experiment. The boundaries between the layers are kept
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Fluorinert FC70 Silicone oil 10 cSt
(layers 1 and 3) (layer 2) (1)/(2)

Kinematic viscosity ν(m2 s−1) 13.4× 10−6 9.08× 10−6(35 ◦C) 1.48

Dynamic viscosity µ(kg m−1s−1) 2.55× 10−2 8.40× 10−3(35 ◦C) 3.04
Heat conductivity λ(W m−1 K−1) 7.00× 10−2 1.34× 10−1 0.522
Thermal diffusivity κ(m2 s−1) 3.44× 10−8 9.51× 10−8 0.362

Density ρ(kg m−3) 1940 934 2.08
Prandtl number Pr 390 95 4.11
Surface tension σ(N m−1) 6.9× 10−3

dσFC70−Si/dT (N m−1K−1) −2.7× 10−5

Table 1. Physical properties of the liquids.
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Figure 1. Symmetrical three-layer system and outline of the experimental set-up.
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Figure 2. Close-up of the antiwetting knife edge. Teflon coating on the FC70 side ensures perfect
anchorage of the layer edges.
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leak tight by Viton seals moulded on an anti-wetting frame forming a knife edge as
depicted in figure 2. Because the knife edge penetrates 2 mm into the fluid cell, the
effective lengths of the free interfaces are 46 mm rather than 50 mm. At the beginning
of the experiment, the curtains are pulled out and gently wound (0.25 mm s−1) on the
rollers (figure 1) creating two free liquid–liquid interfaces subjected to a Marangoni
effect. Heating and cooling are achieved with electrical resistance and Peltier elements
located along the edges of the sapphire windows.

2.3. Stability of the three-layer configuration

In microgravity, the static shapes of connected liquid phases are governed by the
interfacial forces only. In the absence of walls, a three-layer configuration such
as shown in figure 1 would be unstable. Indeed, the surface tension forces would
act to minimize the surface with respect to the volume of the layers, curving the
free interfaces and leading presumably to connected spherical phases. In a finite
container, the situation is different because the layers will remain flat provided that
their edges are properly anchored on the walls. Here, anchorage is achieved using
two stainless steel frames coated on one side with a Teflon film (figure 2) that
prevents creeping of the silicone oil along the quartz wall. Indeed, unlike quartz and
stainless steel, Teflon is wetted preferentially by Fluorinert rather than by silicone
oil. Thus the Teflon-coated sides of the frames are oriented towards the Fluorinert
layers.

Beside controlling the wall wetting, the experimental set-up must be designed to
satisfy another specific requirement: the interfacial tension has to counterbalance
effectively the liquid density difference. This condition has to be fulfilled because of
the low residual gravity level in the Space Shuttle.

In the simplified case of the Rayleigh–Taylor instability, the residual gravity being
normal to the interfaces, the surface tension will stabilize the arrangement for suffi-
ciently short wavelengths. The critical wavelength λm for the onset of the Rayleigh–
Taylor instability for two liquids of infinite lateral extent is given by the capillary
length (Chandrasekhar 1961, chap. X):

λm = 2π

(
σ

g(ρ2 − ρ1)

)1/2

. (2.1)

The maximum tolerable gravity level g∗ can be estimated from (2.1) knowing that the
46 mm length of the free available surface has to be smaller than λm to exclude the
appearance of the Rayleigh–Taylor instability. It is found that

g∗ ≈ 1.30 10−2g0 where g0 = 9.81 m s−1.

In the Space Shuttle, the mean microgravity level is lower than 10−4 g0. The Rayleigh–
Taylor instability mechanism will be inactive for the present geometry and indeed has
not been observed.

2.4. Flow visualization

The liquids are seeded with silver-coated ceramic spheres whose diameters range
between 80 and 100 µm. The flow is visualized using a He-Ne laser light sheet
oriented parallel to the longest side of the test container and located 10 mm from the
front wall. To avoid sedimentation due to the residual acceleration, the densities of
the particles match the densities of the liquids to within a few per cent.
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kc Mac ∆T FC70
c (◦C) ∆T Tot

c (◦C)

1.965 500.78 2.03 5.13

Table 2. Results of the linear stability analysis.

3. Theoretical results
3.1. Linear stability analysis

The expression leading to the critical marginal Marangoni number for a symmetrical
three-layer system of infinite lateral extent, of equal depths, and with flat interfaces
was obtained analytically by Géoris et al. (1993) for the case of monotonic instability.
Although the results of the linear stability analysis cannot strictly apply to a finite-
size container, Dauby & Lebon (1996) showed that in the case of thermocapillary
convection in a single layer, the confinement due to rigid walls exerts only a small
stabilization for not too small aspect ratios. For instance, in a L/h ×W/h = 6 × 4
rectangular box, Mac = 84.4 (instead of 79.6 for an infinite layer). In the present
case with L/h×W/h = 6.25× 4.375, the stabilizing effect due to the confinement is
expected to be as small.

The thermal characteristics of the lateral walls, which are not taken into account
in the linear analysis, introduce a new feature which is more important than the pure
geometrical aspect due to confinement. Indeed, heat is transferred across the lateral
borders and the large difference in thermal conductivity between the Fluorinert and
the silicone oil (see table 1) acts together with the highly conductive quartz to induce
a lateral gradient. In the present case, thus, a steady rest state cannot actually exist
in the vicinity of the lateral walls. The effect of conducting lateral walls has to be
modelled in the numerical analysis. The critical values derived from the previous
linear stability analysis (Géoris et al. 1993) for an infinite lateral system are given in
table 2. The properties of the FC70 are used as scaling units. The Marangoni number
is

Ma =
(−dσFC70−Si/dT )hFC70∆TFC70

κFC70µFC70

.

Since the silicone oil used for the middle layer is five time less viscous (10 cSt
instead of 50 cSt) than the previously considered one (Géoris et al. 1993), the critical
Marangoni number is smaller. The critical wavenumbers for the two cases studied
are very close to one another.

The horizontal component of the velocity at the marginal state and the correspond-
ing two-dimensional flow pattern are shown in figures 3(a) and 3(b) respectively. The
flow is driven by the hotter interface. The flow in the middle layer will drag the colder
interface, creating a small vortex in the top layer. The colder interface is merely
passive and only transmits shear.

The physical explanation is as follows. When a positive thermal disturbance in layer
1 reaches the 1-2 interface, it creates a hot spot and the interfacial tension gradient
that results from it induces a flow that will amplify the initial disturbance. In layer 2,
due to velocity continuity across the interface, the induced flow will bring colder fluid
that damps the temperature gradient along the interface. It thus exerts a stabilizing
effect on the system. In our case, the heat diffusivity of the middle layer (silicone
oil) is about three times larger than that of the outer layers (Fluorinert FC70). Heat
is transported by the flow more effectively in layer 1 so the destabilizing effect will
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Figure 3. Linear stability analysis results. (a) Normalized horizontal velocity profile at the marginal
state: Ma = Mac and k = kc. The flow is driven by the 1-2 interface. The 1-3 interface transmits
only shear. (b) Streamlines at the marginal state.

predominate and the 1-2 interface will be active. The same reasoning, applied in
a symmetrical way to the 2-3 interface, shows that it should be passive. When a
hot spot reaches the 2-3 interface, the induced thermal gradient is damped by the
corresponding downwards flow in layer 3 because of its lower heat diffusivity.

3.2. Numerical simulations

3.2.1. Method

The nonlinear Navier–Stokes and the energy equations are solved numerically in
two-dimensions for the present set-up under zero gravity conditions. In each layer,
the dimensionless balance laws of momentum and energy are expressed in terms of
the stream function ψ and the vorticity function φ:

∂tφ+ ∂yψ∂xφ− ∂yφ∂xψ =
νl

ν1

∆T , (3.1)

Pr(∂tT + ∂yψ∂xT − ∂yT∂xψ) =
κl

κ1

∆T , (3.2)

where
∂ψ

∂y
= vx and − ∂ψ

∂x
= vy, (3.3)

∆ψ = φ. (3.4)
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Figure 4. Grid organization for two-dimensional numerical simulations.

The equations are discretized on a uniform rectangular grid using the centred-
difference technique and solved using the ADI scheme. The ADI scheme, of second-
order accuracy in space, is more stable than the pure explicit scheme (Peyret & Taylor
1990) and is known to give the same results for multilayer convection (Simanovskii &
Nepomnyashchy 1993). The Poisson equation (3.4) is solved using the over-relaxation
technique.

The computational domain is divided into five parts: three for the liquids (NX ×
NY ) and two for the lateral quartz walls (WX ×WY ) (see figure 4). In each of the
five domains, nodes are identified by two coordinates (i, j). The index i varies along
the x-axis from 1 to NX in the liquids and from 1 to WX in the lateral quartz walls.
The index j varies along the y-axis from 1 to NY in the liquids and from 1 to WY
in the lateral quartz walls. The highly conductive sapphire plates are represented by a
single line of nodes kept at constant temperature. The knife edge is modelled using a
single row (KN) of nodes where rigid boundary conditions apply. The Navier–Stokes,
energy and Poisson equations are then solved for the internal nodes in each layer
independently and the boundary conditions are applied to compute the values of
vorticity and temperature on the boundary nodes.

3.2.2. Boundary conditions

For simplicity, the labels of the liquid domain will be either dropped or replaced by
a and b when referring to coupling conditions across the interface a-b that separates
the liquids a and b.

Rigid walls. Along the rigid walls, the stream function ψ is constant and its first-order
derivatives are zero. From definitions (3.3)–(3.4), developing ψ near the walls in a
Taylor series, one finds along the left vertical wall

φ(1)(j) =
8ψ(2)(j) − ψ(3)(j)

2∆x2
where ∆x =

L/h

NX − 1

in each liquid layer.
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Heat transfer through the interfaces. At the interface a-b, the temperature field is
continuous and the heat flux is conserved. The second-order-accuracy expression for
the temperature of the nodes located on the free surface is

Ta/b(i) =
(λa/λb)(4Ta(i)(NYa−1) − Ta(i)(NYa−2)) + 4Tb(i)(2)

− Tb(i)(3)

3(1 + λa/λb)

Free interfaces. The interfaces are assumed to remain flat, for two different reasons.
First, the crispation number NCr is about 2× 10−5. As shown by Takashima (1981),
for such a low crispation number the deflection of the interface can be disregarded.
Secondly, the aspect ratio of the layers (L/h) is moderate: L/h = 5.75 taking 8 mm
for the height of each layer and 46 mm for their width. Since each layer has to contain
at least one vortex corresponding to half of the wavelength λW of the instability, the
minimum wavenumber km permitted in the fluid cell is

km =
2π

λw
= 0.55 where

λw

2
= 5.75;

km is larger than the critical wavenumber of the instability induced by surface
deformation described by Scriven & Sternling (1964). Thus, the instability induced by
surface deformation is prevented from occurring in the actual experimental volume.

The expressions for the vorticity along the free interface are found from the equality
of the horizontal velocities and the expression (3.5) of the Marangoni effect:

φa − µb

µa
φb =

Ma

Pr

(
∂T

∂x

)
a/b

, (3.5)

φa(i)(NYa) = − Ma(µ1/µa)

Pr(1 + µb/µa)

(
Ta(i+1)(NYa))− Ta(i−1)(NYa)

)
2∆x

,

where

Ma =
(−dσ/dT )∆T1hl

κ1µl
and Pr =

v1

κ1

.

Heat losses through the quartz walls. The ambient temperature around the fluid cell
is colder than the temperature of the cold flange. Although the fluid cell has been
carefully designed, when the temperature of the hot flange is increased, a small part
of the heat flux unavoidably escapes through the lateral quartz walls. The modelling
of the heat transfer through the vertical boundaries of the quartz walls is based on
a three-dimensional finite-element study performed by the hardware manufacturer.
These simulations show a small lateral heat loss (φ) from the lateral quartz wall,
estimated to be about 6 W m−2 K−1 ∆T . The boundary condition for the temperature
on the external faces of the quartz walls is

T(wx)(j) =
(4T(wx−1)(j) − T(wx−2)(j) − 2∆xφ/λwall)

3
,

where φ is the non dimensional heat loss and λwall is the heat conductivity of the
quartz wall.

3.2.3. Convergence

The steady-state flow patterns are computed in each layer on a 120× 30 grid (see
figure 4). The temperature field in the lateral walls is computed on a 24 × 88 grid.
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NX NY |ψ|max(×103) |vx|max(µm s−1) |vy |max(µm s−1)

60 15 5.306 59.4 24.4
80 20 5.172 60.3 24.9

120 30 5.09 62.2 24.5
160 40 5.07 63.1 24.3
350 60 5.04 64.1 24.6
500 70 5.07 64.3 24.6

Table 3. Results of the convergence test (∆T num = 10 ◦C or Ma = 977.4).

∆T num (◦C) Ma |ψ|max(×103) |vx|max(µm s−1) |vy |max(µm s−1)

2 195.5 0.901 10.1 3.96
4 391.0 1.89 18.8 7.84
6 586.0 3.26 29.5 12.6
8 781.9 3.88 47.0 18.5

15 1466 7.49 94.3 35.1
20 1955 9.49 120.0 42.7

Table 4. Numerical results obtained for increasing ∆T num.

The convergence of the code has been tested with different grids by increasing NX
and NY for Ma = 977.4, corresponding to a temperature difference between the
hot and the cold flange of ∆T num = 10 ◦C. The results of the convergence tests are
summarized in table 3. Since the uncertainty in the values of the physical parameters
of the liquids is at least a few percents, the convergence obtained is sufficient. There
is no need to include an artificial perturbation at the beginning of the simulation to
induce a steady flow, because of the influence of the lateral conductive walls. Steady
convective patterns are computed for discrete increments of the temperature of the
hot side corresponding to increasing values of the Marangoni number. Under such
conditions, the steady-state situation previously obtained serves as an initial condition
for the temperature increments.

3.2.4. Numerical results

Numerical values for the maximum stream function, and horizontal and vertical
velocities are given for different ∆T num in table 4. Three steady flow regimes are
observed (see figure 5): regime 1 reflects the wall-induced flow due to the lateral
temperature gradients (see figure 5a), regime 2 corresponds to the onset of the
Marangoni–Bénard instability influenced however by the wall effect (see figure 5b)
and, after an unsteady transition zone (see figure 5c), regime 3 (figure 5d) where the
rotation of the vortices is reversed and is no longer determined by the wall effect.

The wall-induced flow – regime 1 (figure 5a). The difference in the heat conductivities of
the liquids and the quartz wall impose temperature gradients along the free surfaces.
The horizontal temperature gradient along the 1-2 interface scaled by the vertical
temperature gradient ∆T num/3h computed in the conductive situation (Ma = 0) is
given in figure 6. Although the lateral gradient is large (up to 70% of the vertically
imposed gradient) close to the wall, it does not propagate beyond a few mm in
the liquids, away from the walls. It is mainly located in the knife edge region
(10 mm< x < 12 mm) where the cell design forbids any thermocapillary convection.
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(a) (b)

(c) (d )

Figure 5. Streamlines (×103) and isotherms (T/∆T num) obtained by the two-dimensional
numerical simulation. (a) ∆T num = 1.0 ◦C: wall-induced flow or regime 1 (ψmax = 0.464 × 10−3,
ψmin = −0.464 × 10−3). (b) ∆T num = 6.0 ◦C: regime 2 (ψmax = 3.27 × 10−3, ψmin = −3.27 × 10−3).
(c) ∆T num = 6.9 ◦C: transition between regimes 2 and 3 (unsteady) (ψmax = 2.94 × 10−3,
ψmin = −3.08 × 10−3). (d) ∆T num = 14.0 ◦C: regime 3 (ψmax = 7.03 × 10−3, ψmin = −7.03 × 10−3).
Positive values of the stream function correspond to anticlockwise rolls.

The effect of the lateral gradient is clearly visible on figure 5(a). Because of the
symmetry of the arrangement, the temperature gradients along the free interfaces
created by the walls have opposite signs. Consequently, near the walls, the 1-2
interface induces flow towards the centre of the cell whereas the 2-3 interface drives
a flow towards the walls. The flow is very slow and no significant distortion of the
isotherms from the state of rest can be observed.

Regime 2 (figure 5b). The existence of the wall-induced flow introduces a structural
instability in the system (Drazin 1992, chap. 2). Thus, it is not obvious how to find the
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Figure 6. Horizontal temperature gradient scaled to the vertical temperature gradient across the
quartz wall (0 < x < 10 mm), along the knife edge (10 mm < x < 12 mm) and along the 1-2
interface (x > 12 mm).

appropriate criterion defining the critical temperature difference ∆T num
c for the onset

of the Marangoni–Bénard convection. In an ideal situation where the lateral walls
are perfectly insulating, ∆T num

c is by definition the temperature difference at which
departure from the rest conductive state is observed and the dynamic description of
that case is clearly a pitchfork bifurcation (e.g. Dauby & Lebon 1996). But in the
real experimental case, the weak wall-induced flow is superimposed on the Bénard–
Marangoni instability onset. The bifurcation now contains an imperfection (Drazin
1992, chap. 2) and is described by the following Ginsburg–Landau equation for a
single amplitude A (Manneville 1991):

Ȧ = γ + εA− βA3 with ε = ∆T − ∆Tc. (3.6)

The small parameter γ is a measure of the strength of the imposed imperfection.
Indeed, γ = 0 corresponds to a perfect subcritical pitchfork perturbation. The strength
of the lateral-wall-induced flow is proportional to ∆T in regime 1, so that we will
assume that γ = ζ∆T . β in equation (3.6) is a saturation parameter and is of no
interest in the forthcoming discussion. The amplitude at the steady state is found
from (3.6) which becomes

0 = γ + εA− βA3. (3.7)

The steady amplitude As which corresponds to the imperfect bifurcation is the single
root of the cubic equation (3.7) while the two other roots are complex conjugate when
ε < 0. We have

As =
F

3(2)1/3β
− 21/3ε

F
, (3.8)

where

F = (27β2γ + (729β4γ2 + 108β2ε3)1/2)1/3.

If the dynamic of the system obeys the Ginsburg–Landau amplitude equation (3.6),
the steady amplitude of the flow should obey (3.8).

In figure 7, values of the vertical component of velocity taken at x = L/2, y =
(2/3)h, in layer 1 are plotted (circles) as a function of ∆T . At steady state, they
define the amplitudes A. The unknown parameters β, ζ and ∆T num

c will be determined
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Figure 7. vy in layer 1 taken at (x = L/2, y = (2/3)h) (circles) plotted as a function of ∆T fitted with

the real root of (3.7) (solid line). ζ = 0.23 µm s−1 ◦C−1, β = 0.11 ◦C−1(µm s−1)
−2

and ∆T num
c = 4.75 ◦C.

numerically by fitting (3.7) to figure 7. We obtain finally ∆T num
c = 4.75 ◦C. This value

is in good agreement with the one obtained from linear stability analysis (see table 2).
As ∆T num

c is exceeded, the largely quiescent middle zone starts to move and two
pairs of rolls appear in layers 1 and 2 (figure 5b). This pattern is highly reminiscent of
the previous linear analysis results (figure 3b): the flow is driven by the 1-2 interface
and layer 3 is almost at rest in the central region of the cell where the wall-induced
flow will not propagate.

Transition between regimes 2 and 3 (figure 5c). Around ∆T num = 6.9 ◦C, the flow
pattern undergoes a complex transformation. Two rolls appear in the central region
of layers 1 and 2. This flow pattern shown on figure 5(c) is unsteady and its eventual
stability range has not been investigated.

Regime 3 (figure 5d). The central rolls that appeared during the previous stage increase
and compress the lateral rolls towards the walls. Finally, in layer 2, the lateral rolls
are reduced to two very small vortices located close to the walls near the 2-3 interface.
In layer 3, the convection consists of two wide vortices coupled with the central rolls
of layer 2 and with the two small residual vortices.

This description of the flow pattern is valid over a wide range of thermal constraints.
The structure of the flow remains qualitatively the same for ∆T num up to 20 ◦C.

Velocity profiles. Three horizontal profiles of vy in layer 1(y =
(
2/3
)
h = 5.3 mm)

which are representative of the three different regimes are shown in figure 8. In
regime 1 (∆T num = 2.0 ◦C, squares), the flow is upward near the walls and is almost
absent in the centre. Regime 2 (∆T num = 6.6 ◦C, triangles) appears essentially as an
amplification of the wall-induced flow. Fluid is upward near the walls and in the
centre. In regime 3 (∆T num = 9.7 ◦C, circles) the flow is in the opposite direction
along the lateral walls. In the actual configuration, the situation where the flow is
going downward along the lateral wall is preferred even though it is not favoured by
the wall-induced thermal gradient. The reason why the thermocapillary effect tends
to drive the interface flow towards the rigid conducting boundary rather than the
reverse is still an open question. Nevertheless, the existence of a preferred direction is
natural because the physical situations where the fluid moves away from the lateral
walls or towards it are not identical.
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4. Analysis of the experimental results
4.1. Thermal data

Six thermistors, penetrating 5 mm into the liquid bulk, are inserted along the lateral
wall of the quartz frame to record the temperatures near the lateral walls, throughout
the experiment. The precise locations of these thermistors and the recording of the
signals during the experiment are shown in figure 9. The instrumentation has to obey
several external constraints such that, in order to change the temperature difference
across the three-layer system, the reference point on the hot side is varied by jumps
of one degree. The time span allowed for this experiment was rather short and it did
not allow very accurate measurements of the critical temperature difference at the
onset of convection.
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Figure 10. Comparison between experimental (circles) and numerical (solid line) values of
∆2 at quasi-steady state.

For high Prandtl number fluids, beyond the onset of convection, the velocity
field is slaved to the thermal field. The intensity of the flow will be reflected by
the temperature recordings at the thermistors. From these signals, the results of
the numerical simulations should be validated and thus the three different regimes
identified (wall-induced flow, regime 2 and regime 3) depending on the temperature
difference imposed between the two sapphire conductive plates. Since the distance
between the thermistors above and beneath any a-b interface is 5.75 mm (figure 9),
we define the following quantity ∆2 from the thermistors signals to compare the
temperature gradients across the interfaces:

∆2 =
T4 − T5

5.75
− T2 − T3

5.75
. (4.1)

To compare experimental and numerical data, ∆2 is plotted versus the temperature
difference ∆T (∆T exp and ∆T num) across the three layers (see figure 10). The general
tendency is very similar for both the experimental and the numerical approaches.
The reason for choosing (4.1) is that in regime 1, ∆2 has to be close to zero because
of the symmetry of the configuration and because the isotherms are not perturbed:
T4 − T5 is more or less equal to T2 − T3 in the range of the imposed ∆T . When
∆T is increased, the hotter 1-2 interface pushes the liquids away from the walls,
bringing hot Fluorinert and cold silicone oil to the 1-2 interfaces near the lateral wall.
But in layer 3, the flow is very slow and the thermal field is undistorted from the
conductive state. This means that T2 −T3 increases whereas T4 −T5 barely changes:
consequently ∆2 becomes negative. In the region ∆2 < 0, the experimental curve
reaches its minimum value earlier than the numerical curve, indicating that ∆T exp

c is
smaller than ∆T num

c = 4.75 ◦C.
As ∆T is increased still further, Marangoni convection becomes more and more

important, reducing the relative thermal influence of the walls on the flow. This means
that the rotation direction of the vortices at the lateral walls is no longer determined
by the wall lateral gradient effect but is essentially dictated by the Marangoni–Bénard
instability. When the 1-2 interface is pushing the liquids towards the wall, the colder
Fluorinert and the hotter silicone oil move away from that interface. But, T2 − T3

will now decrease and on the other hand T4−T5 will increase so that ∆2 will increase
towards zero and become positive.
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This behaviour is well reproduced by both the numerical and the experimental
results. Generally, the numerical curve matches quite well the experimental points
for ∆T < 10 ◦C. Beyond this value of ∆T , the recorded experimental values of ∆2

are significantly larger than their numerical counterparts indicating that the real flow
strength is larger than the simulated one (figure 10). The transition between regime
2 and regime 3 corresponding to the reverse of the rotation of the lateral vortices
occurs for ∆T exp = 6.9 ◦C whereas it occurs for ∆T num = 7.6 ◦C in the numerical
simulations. The agreement for this nonlinear effect thus appears quite good.

4.2. Flow pattern analysis

The flow is visualized using a light sheet parallel to the widest side of the experimental
cell; it is 1 mm thick and located 10 mm from the front window inside the liquids. The
images are digitized and the velocity of the tracer particles is measured using a grey
level correlation algorithm. The flow is resolved in 1.2 mm2 windows. To improve the
signal-to-noise ratio and to increase the number of velocity vectors computed, the
velocity maps shown here are time averaged. The average velocity vector v̄(x, y) is
computed as

v̄(x, y) =
1

N

t1∑
t=t0

v(t)(x, y),

where N is the number of samples acquired between t0 and t1, t0 is the start of the
sampling sequence and t1 the end of the sampling sequence.

4.3. Onset of convection

No convection is observed inside the fluid cell for time t < 850 s for which the
temperature differences imposed across the three layers are smaller than ∆T exp =
3.8 ◦C. An organized flow is observed from t = 2860 s (∆T exp = 4.9 ◦C) onwards. The
Marangoni–Bénard instability sets in for ∆T exp

c between 3.8 ◦C and 4.9 ◦C.

4.3.1. Regime 2

An organized flow is observed in layers 1 and 2 with two rolls located in the central
region of the cell. Layer 3 is at rest (figure 11a). In the middle of the cell, as observed
in the numerical simulations for regime 2, the flow in layer 1 is rising towards layer 2.
Near the lateral walls, the flow seems to be very weak. Actually, for the Marangoni–
Bénard instability convection always starts near the lateral walls (Koschmieder 1992).
It is very likely that, in that region, the largest components of the velocity vectors are
perpendicular to the visualization plane, and thus no measurements were possible.
As ∆T exp is increased, four convective rolls become clearly visible in layers 1 and 2
(figure 11b).

4.3.2. Regime 3

The roll at the right-hand side, initially much larger than the other ones, shrinks
progressively (figure 11c, d). The pattern becomes more regular as the different rolls
become of the same size (figure 11e). The long exposure time picture given in figure
12 is a visualization of the streamlines in regime 3. While convection is intense in
layers 1 and 2, it is very weak in layer 3. At the walls, the direction of rotation
is opposite to the one of regime 1 and 2, as the numerical scheme predicts. Near
interface 2-3, close to the lateral walls, the two residual vortices are clearly apparent.
The characteristic shapes of the central vortices in layer 2 compare very well with the
numerical simulations.
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Figure 11. Experimental velocity fields, vector scale is given in upper left corner. (a) ∆T exp =
5.5 ◦C, vx(max) = 44 µm s−1, vy(max) = 28 µm s−1. (b) ∆T exp = 6.7 ◦C, vx(max) = 38 µm s−1,
vy(max) = 34 µm s−1. (c) ∆T exp = 7.8 ◦C, vx(max) = 41 µm s−1, vy(max) = 36 µm s−1. (d)
∆T exp = 8.7 ◦C, vx(max) = 57 µm s−1, vy(max) = 37 µm s−1. (e) ∆T exp = 9.7 ◦C, vx(max) = 72 µm s−1,
vy(max) = 43 µm s−1. (f) ∆T exp = 12.4 ◦C, vx(max) = 82 µm s−1, vy(max) = 44 µm s−1.

Figure 12. Long exposure time picture of the convective flow ∆T exp = 9.7 ◦C.
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As ∆T exp is further increased, the vz velocity component perpendicular to the light
sheet is dominant in the central region of layers 1 and 2 and the structure of the flow
cannot be understood using two-dimensional visualization (figure 11f). Vortices are
however still visible near the lateral walls.

4.3.3. Velocity profiles

Corresponding to the numerical results (compare with figure 8), experimental
horizontal vy profiles (taken at y = (2/3)h) are shown on figure 13. For the profile
that corresponds to regime 2 (circles), the flow is rising up in the centre region and
very weak near the walls. The profile is shifted to the left when ∆T exp is increased. The
magnitude of the velocity does not increase as ∆T exp is increased. This is probably
an artefact due to the three-dimensional nature of the convection cells, the light
sheet not necessarily being located exactly in a plane where the z velocity component
vanishes.

4.4. Comparison with the linear stability analysis and the numerical simulations

4.4.1. Onset of convection

Visual observations indicate that convection starts for a temperature difference lying
between 3.8 ◦C and 4.9 ◦C. The comparison of the thermal data using ∆2 indicates that
the effect of the experiment flow on the thermal field is qualitatively the same as the
numerical flow (see figure 10). A careful analysis of ∆2 also shows that ∆T exp

c is lower
than ∆T num

c = 4.75 ◦C but does not permit the uncertainty in ∆T exp
c to be further

reduced. Nevertheless, ∆T exp
c is within 20% of ∆T num

c which is quite satisfactory since
even in an accurately controlled ground experiment one expects an error of about
10% on the measured Marangoni number (Koschmieder & Biggerstaff 1986).

4.4.2. Convection

The experimental results compare well with the results of two-dimensional numer-
ical simulations and the linear stability analysis. The instability is driven by the 1-2
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interface in layers 1 and 2 while layer 3 is almost at rest. The number of convection
cells (two) is in perfect agreement with the linear stability analysis which predicts that
the critical wavelength λc = 2π/kch = 2.56 cm is half of the length of the container.
Both regimes 2 and 3 identified in the numerical results are observed experimentally
through the dependence of ∆2 on ∆T exp and the velocity fields. The inversion of the
vortices rotation in the numerical simulations is visible in the experimental pattern:
compare figure 11(a) and figure 11(d). In regime 3, experimental patterns are very
similar to the simulated ones. In particular, detailed features of the flow, related to the
effect of the lateral walls, are present in both cases (compare figure 5d and figure 12).

5. Conclusions
In this paper, the first experimental results on the Marangoni–Bénard instability

in a multilayer system are presented. This investigation has been performed in
microgravity, where the influence of the Rayleigh mechanism of instability is negligible.
A pure thermocapillary-driven phenomenon has thus been analysed. Microgravity
permits the mechanical stability of a symmetrical three-layer system (with identical
external layers). This configuration allows comparison of the behaviour of physically
identical liquid–liquid interfaces which have opposite orientations with respect to the
temperature gradient.

The observations confirm the criterion for the onset of convection found by Scriven
& Sternling (1959), Smith (1966) and Reichenbach & Linde (1981). A free interface
will lead to the onset of convection provided the hotter liquid has a lower thermal
diffusivity than the adjacent colder one. This is true for usual couples of liquids whose
interfacial tension is a decreasing function of the temperature (or for most liquid–gas
systems).

Reasonable quantitative agreement between numerical and experimental results is
found for the critical temperature difference for the onset of the Marangoni–Bénard in-
stability and for the spatial wavenumber. There is also qualitative agreement between
the values of the velocity fields which were numerically simulated in two dimensions
and those that were experimentally measured. However, the modules of the velocity
vectors computed by numerical simulation are about half of the measured ones.

Direct simulation of the three-dimensional flow in a symmetrical three-layer system
could provide a better quantitative agreement but would require larger computer
resources. Significant reduction of the computing cost could however be achieved
by computing the Stokes equation instead of the Navier–Stokes equation (Bestehorn
1995 and Thess, Spirn & Jüttner 1995) provided that the Reynolds number is small
enough. Another possibility is to assume that the flow pattern is symmetrical with
respect to the vertical axis for example.

Another question that remains to be answered is what is responsible for the
direction of the flow along the wall when one reaches the transition zone between
regime 2 and 3.
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Thess, A., Spirn, D. & Jüttner, B. 1995 Viscous flow at infinite Marangoni number. Phys. Rev.
Lett. 75, 4614–4617.

Wahal, S. & Bose, A. 1988 Rayleigh–Bénard and interfacial instabilities in two immiscible liquid
layers. Phys. Fluids 31, 3502–3510.

Zeren, W. & Reynolds, W. 1972 Thermal instabilities in two-fluid horizontal layers. J. Fluid Mech.
53, 305–327.


